Wednesday, 23 August 2017

Vantagens Do Meio Filtro Móvel


As 7 armadilhas das médias móveis Uma média móvel é o preço médio de uma garantia durante um período de tempo especificado. Os analistas freqüentemente usam médias móveis como uma ferramenta analítica para tornar mais fácil seguir as tendências do mercado, à medida que os valores se movem para cima e para baixo. As médias móveis podem estabelecer tendências e medir o dinamismo. Portanto, eles podem ser usados ​​para indicar quando um investidor deve comprar ou vender uma segurança específica. Os investidores também podem usar médias móveis para identificar pontos de suporte ou de resistência, a fim de avaliar quando os preços provavelmente mudarão de direção. Ao estudar os intervalos de negociação históricos, os pontos de apoio e resistência são estabelecidos onde o preço de uma garantia reverteu sua tendência ascendente ou descendente, no passado. Esses pontos são usados ​​para fazer, comprar ou vender decisões. Infelizmente, as médias móveis não são ferramentas perfeitas para estabelecer tendências e apresentam muitos riscos sutis, mas significativos para os investidores. Além disso, as médias móveis não se aplicam a todos os tipos de empresas e indústrias. Algumas das principais desvantagens das médias móveis incluem: 1. As médias móveis atraem tendências de informações passadas. Eles não levam em consideração mudanças que podem afetar o desempenho futuro de segurança, como novos concorrentes, demanda maior ou menor de produtos na indústria e mudanças na estrutura gerencial da empresa. 2. Idealmente, uma média móvel mostrará uma mudança consistente no preço de uma segurança, ao longo do tempo. Infelizmente, as médias móveis não funcionam para todas as empresas, especialmente para aqueles em indústrias muito voláteis ou aqueles que são fortemente influenciados pelos eventos atuais. Isto é especialmente verdadeiro para a indústria do petróleo e as indústrias altamente especulativas, em geral. 3. As médias móveis podem ser distribuídas em qualquer período de tempo. No entanto, isso pode ser problemático porque a tendência geral pode mudar significativamente dependendo do período de tempo usado. Cortes de tempo mais curtos têm mais volatilidade, enquanto marcos de tempo mais longos têm menos volatilidade, mas não contam novas mudanças no mercado. Os investidores devem ter cuidado com o prazo que eles escolherem, para garantir que a tendência seja clara e relevante. 4. Um debate em curso é se deve ou não se colocar mais ênfase nos últimos dias no período de tempo. Muitos acham que os dados recentes melhor refletem a direção em que a segurança se está movendo, enquanto outros acham que dar alguns dias mais peso do que outros, prejudica incorretamente a tendência. Os investidores que usam diferentes métodos para calcular médias podem desenhar tendências completamente diferentes. (Saiba mais em Médias móveis simples vs. Exponenciais.) 5. Muitos investidores argumentam que a análise técnica é uma maneira sem sentido de prever o comportamento do mercado. Eles dizem que o mercado não tem memória e o passado não é um indicador do futuro. Além disso, há pesquisas substanciais para respaldar isso. Por exemplo, Roy Nersesian realizou um estudo com cinco estratégias diferentes usando médias móveis. A taxa de sucesso de cada estratégia variou entre 37 e 66. Esta pesquisa sugere que as médias móveis apenas produzem resultados aproximadamente metade do tempo, o que poderia fazer com que eles usassem uma proposta de risco para efetivamente sincronizar o mercado acionário. 6. Os valores mobiliários mostram frequentemente um padrão cíclico de comportamento. Isso também é verdade para as empresas de serviços públicos, que têm uma demanda constante por seu produto ano-a-ano, mas experimentam fortes mudanças sazonais. Embora as médias móveis possam ajudar a suavizar essas tendências, elas também podem esconder o fato de que a segurança está em um padrão oscilatório. (Para saber mais, veja Keep An Eye On Momentum.) 7. O objetivo de qualquer tendência é prever onde o preço de uma garantia será no futuro. Se uma segurança não é tendência em qualquer direção, ela não oferece uma oportunidade de lucrar com a compra ou venda a descoberto. A única maneira que um investidor pode lucrar seria implementar uma estratégia sofisticada baseada em opções que dependa do preço restante constante. A média final As médias móveis foram consideradas uma ferramenta analítica valiosa por muitos, mas para que qualquer ferramenta seja efetiva, você deve primeiro entender sua função, quando usá-la e quando não usá-la. Os perigos aqui discutidos indicam que as médias móveis podem não ter sido uma ferramenta efetiva, como quando usadas com títulos voláteis e como podem ignorar certas informações estatísticas importantes, como padrões cíclicos. Também é questionável como as médias móveis efetivas são para indicar com precisão as tendências de preços. Dadas as desvantagens, as médias móveis podem ser uma ferramenta mais utilizada em conjunto com outras. No final, a experiência pessoal será o último indicador de quão eficazes são realmente para o seu portfólio. (Para mais, veja As médias móveis adaptativas conduzem a melhores resultados) O fluxo de caixa gratuito da empresa para os 12 meses anteriores. O FCF avançado é usado por analistas de investimentos no cálculo de uma empresa da década de quarenta. Um psicólogo da riqueza é um profissional de saúde mental que se especializa em questões relacionadas especificamente com indivíduos ricos. O branqueamento de capitais é o processo de criar a aparência de grandes quantias de dinheiro obtidas de crimes graves, tais como. Métodos de contabilidade que se concentram em impostos, em vez de aparência de demonstrações financeiras públicas. A contabilidade tributária é regida. O efeito boomer refere-se à influência que o cluster geracional nascido entre 1946 e 1964 tem na maioria dos mercados. Um aumento no preço das ações que muitas vezes ocorre na semana entre o Natal e o Ano Novo039s Day. Existem inúmeras explicações. O Guia de cientistas e engenheiros para processamento de sinal digital Por Steven W. Smith, Ph. D. Capítulo 15: Filtros médios móveis Parentes do Filtro médio móvel Em um mundo perfeito, os designers de filtros só precisam lidar com informações codificadas de domínio do tempo ou domínio, mas nunca uma mistura dos dois no mesmo sinal. Infelizmente, existem algumas aplicações em que ambos os domínios são simultaneamente importantes. Por exemplo, os sinais de televisão se enquadram nesta categoria desagradável. As informações de vídeo são codificadas no domínio do tempo, ou seja, a forma da forma de onda corresponde aos padrões de brilho na imagem. No entanto, durante a transmissão, o sinal de vídeo é tratado de acordo com sua composição de freqüência, como sua largura de banda total, como as ondas de suporte para cor de amplificador de som são adicionadas, restauração de amplificação de eliminação do componente de CC, etc. Como outro exemplo, interferência eletromagnética É melhor entendido no domínio da frequência, mesmo que a informação dos sinais seja codificada no domínio do tempo. Por exemplo, o monitor de temperatura em uma experiência científica pode estar contaminado com 60 hertz das linhas de energia, 30 kHz de uma fonte de alimentação de comutação ou 1320 kHz de uma estação de rádio AM local. Parentes do filtro de média móvel têm melhor desempenho de domínio de freqüência e podem ser úteis nestas aplicações de domínio misto. Os filtros médios móveis de passagem múltipla envolvem passar o sinal de entrada através de um filtro médio móvel duas ou mais vezes. A Figura 15-3a mostra o núcleo global de filtro resultante de uma, duas e quatro passagens. Duas passagens equivalem a usar um kernel de filtro triangular (um kernel de filtro retangular convolvido com ele próprio). Após quatro ou mais passagens, o kernel de filtro equivalente parece um Gaussiano (lembre-se do Teorema do Limite Central). Conforme mostrado em (b), as passagens múltiplas produzem uma resposta de passo em forma de S, em comparação com a linha reta da única passagem. As respostas de freqüência em (c) e (d) são dadas pela Eq. 15-2 multiplicado por si mesmo por cada passagem. Ou seja, cada vez que a convolução do domínio resulta em uma multiplicação dos espectros de freqüência. A Figura 15-4 mostra a resposta de freqüência de dois outros parentes do filtro médio móvel. Quando um Gaussiano puro é usado como um kernel de filtro, a resposta de freqüência também é gaussiana, conforme discutido no Capítulo 11. O gaussiano é importante porque é a resposta de impulso de muitos sistemas naturais e manmados. Por exemplo, um breve pulso de luz que entra em uma longa linha de transmissão de fibra óptica sairá como um pulso gaussiano, devido aos diferentes caminhos captados pelos fótons dentro da fibra. O kernel de filtro gaussiano também é usado extensivamente no processamento de imagens porque possui propriedades únicas que permitem rápidas ondulações bidimensionais (ver Capítulo 24). A segunda resposta de frequência na Fig. 15-4 corresponde ao uso de uma janela Blackman como um kernel de filtro. (A janela do termo não tem significado aqui é simplesmente parte do nome aceito desta curva). A forma exata da janela Blackman é dada no Capítulo 16 (Eq. 16-2, Fig. 16-2) no entanto, parece muito com um gaussiano. Como esses parentes do filtro de média móvel melhor do que o filtro de média móvel em si. Três maneiras: primeiro e mais importante, esses filtros possuem melhor atenuação de parada do que o filtro de média móvel. Em segundo lugar, os grãos de filtro se estreitam para uma amplitude menor perto das extremidades. Lembre-se de que cada ponto no sinal de saída é uma soma ponderada de um grupo de amostras da entrada. Se o kernel do filtro diminui, as amostras no sinal de entrada que estão mais distantes recebem menos peso do que as próximas. Em terceiro lugar, as respostas passo a passo são curvas suaves, em vez da linha direta abrupta da média móvel. Esses dois últimos geralmente são de benefício limitado, embora você possa encontrar aplicativos onde eles são vantagens genuínas. O filtro de média móvel e seus parentes são quase iguais ao reduzir o ruído aleatório enquanto mantém uma resposta passo a passo. A ambigüidade reside na forma como o tempo de subida da resposta passo é medido. Se o tempo de subida for medido de 0 a 100 da etapa, o filtro médio móvel é o melhor que você pode fazer, como mostrado anteriormente. Em comparação, medir o tempo de subida de 10 a 90 torna a janela Blackman melhor do que o filtro de média móvel. O argumento é que isso é apenas uma disputa teórica que consideram esses filtros iguais neste parâmetro. A maior diferença nesses filtros é a velocidade de execução. Usando um algoritmo recursivo (descrito em seguida), o filtro de média móvel será executado como um raio em seu computador. Na verdade, é o filtro digital mais rápido disponível. Várias passagens da média móvel serão correspondentemente mais lentas, mas ainda muito rápidas. Em comparação, os filtros gaussianos e negros são terrivelmente lentos, porque devem usar convolução. Pense em um fator de dez vezes o número de pontos no kernel de filtro (com base na multiplicação sendo cerca de 10 vezes mais lento do que a adição). Por exemplo, espere que um gaussiano de 100 pontos seja 1000 vezes mais lento do que uma média móvel usando recursão.

No comments:

Post a Comment